На главную
Отправить письмо
Карта сайта
Окна ПВХ
ПВХ Профиль Металлопластик Карта сайта №1Карта сайта №2Карта сайта №3
Gridnev ОКНА - производство, установка,
реализация металлопластиковых окон.

Но ученым надо знать, как ведет себя тот или иной металл не только в спокойном состоянии, но и в условиях кавитации.

Слово "кавитация" образовано от латинского — "пустота". Чем же вредна пустота? И откуда она берется?! В движущейся воде образуются небольшие пространства (пузырьки), заполненные воздухом. Эти пузырьки очень опасны. Лопаясь, они вызывают постоянные удары жидкости о поверхность обтекаемого тела, такие систематические "выстрелы" разрушают любой материал. Титан очень хорошо противостоит гидравлической кавитации. Вот один очень характерный пример.

Диски из различных материалов вращались в морской воде со скоростью свыше 1000 оборотов в минуту. В подобных опытах особенно повреждаются внешние края диска, так как именно там потоки воды достигают наивысшей скорости. После двухмесячного непрерывного вращения титановый диск "похудел" всего на 0,05 грамма, второй же после титана по стойкости материал разрушался в 80 раз интенсивнее, и его толщина по наружной кромке уменьшилась, тогда как титановый диск нисколько не сделался тоньше.

С титаном связывают будущее судостроения — ведь в морской воде он самый стойкий из промышленных металлов. Ни бронза, ни латунь, ни все другие сплавы на основе меди и никеля не могут соперничать с ним, не говоря уже о нержавеющих сталях, алюминии или магнии.

Правда, драгоценные металлы, за исключением серебра, тоже не вызывают никаких претензий по части стойкости в агрессивной среде морей и океанов, но разве можно серьезно говорить об их широком применении в конструкциях судов?

Стойкость в агрессивной среде морей и океанов

Мы никогда не увидим кораблей с золотыми якорями, с платиновым корпусом или с мачтами из иридия. А вот титановые корпуса и мачты — не пустая мечта.

В мире очень много веществ, обладающих способностью активно разрушать металлы, но подавляющее большинство их получено человеком искусственно и по сравнению с природными веществами количество их еще не так велико. Однако и в самой природе есть весьма агрессивные среды и важнейшая из них — морская вода. Важнейшая потому, что добрых две трети поверхности нашей планеты занимают океаны и моря, и потому, что морская вода, как мы уже узнали, крайне разрушительно действует на металлы. Воздействие это проявляется не только в случае погружения металлов в воду, но и тогда, когда они находятся над океаном или на его берегу. И как хорошо, что люди, наконец, имеют в своем распоряжении металл, который ничуть не боится моря и запасы которого в мире огромны!

Титан очень нужен не только судостроению, но и морской авиации, различным прибрежным сооружениям. В будущем, когда суша нашей планеты будет полностью освоена, когда будут возделаны все без исключения плодородные земли, а потребность в продовольственных ресурсах будет продолжать расти, люди вплотную займутся освоением богатств мирового океана.

Помогут им в этом металлы и в первую очередь — титан.

Если титан настолько устойчив в морской воде, то пресная вода для него, вероятно, совершенно не представляет опасности? Да, именно так. Хотя пресная вода тоже далеко не безобидна: обычная мягкая сталь, опущенная в водопроводную воду, уже через сутки покрывается толстым слоем ржавчины. Титан же не разрушается не только в обычной холодной, но даже в кипящей воде.

Одно из коррозионных испытаний титана заключалось в том, что пластинки металла помещали в автоклав, который в свою очередь ставили в печь. Температура нагрева составляла 280 °С, в результате чего давление в автоклаве достигало 480 кПа и на каждый квадратный сантиметр титановой пластинки действовало разрушающее усилие в 140 килограммов. И так продолжалось 13 суток.

Когда же испытания закончились, взору исследователей предстали совершенно не поврежденные титановые пластинки. Они не потеряли ни миллиграмма своей массы и не утратили прочности. А ведь перед испытанием пластинки намеренно изгибали, чтобы титан находился в напряженном состоянии, так как под напряжением металлы разрушаются быстрее.

Титану не страшны никакие атмосферные осадки — ни дожди, ни туманы, ни снег, ни град, совсем не опасен воздух, загрязненный отходами промышленных предприятий. Под открытым небом титан даже не тускнеет. Вот почему его называют "вечным" металлом.

Невидимая броня

Благородные металлы устойчивы против коррозии вследствие своего "благородства" — то есть присущей им химической невозмутимости. Но почему стоек титан? Ведь его даже при всем желании нельзя отнести к разряду инертных — это один из наиболее активных элементов, постоянно стремящихся вступить в реакцию, и именно этим прежде всего объясняется трудность его выделения из соединений.

Все это так, но тем не менее металл демонстрирует завидную коррозионную стойкость.

Теоретически стойкость того или иного металла против коррозии прямо зависит и от так называемого электродного потенциала: чем он выше, тем лучше и коррозионная стойкость, и наоборот. Так вот, по подсчетам и экспериментам, электродный потенциал титана невысок и теоретически титан должен быть по коррозионной стойкости примерно таким же "середнячком", как магний или алюминий. Чем же объясняется в таком случае его нередко прямо-таки поразительная стойкость?

Вот здесь - то как раз химическая активность металла, стремление вступать в реакцию с другими элементами служит добрую службу. Благодаря своей химической активности титан интенсивно окисляется и на его поверхности образуется тончайшая пленка диоксида титана. И где бы ни находился металл — па воздухе, в воде или в производственных агрессивных растворах — от дальнейшего взаимодействия с разрушающими веществами толщу металла защищает эта тонкая, но чрезвычайно прочная пленка. Пленка настолько тонка, что ее невозможно увидеть не то что невооруженным глазом, но даже и в обычный микроскоп. В быту мы редко пользуемся малыми величинами и кажется, что меньше микрона — тысячной доли миллиметра — нет уже никаких единиц измерения. Однако есть еще ангстрем — десятитысячная доля микрона. Вот в ангстремах - то как раз и выражают толщину оксидной пленки титана.

Хотя защитная пленка необычайно тонка, она достаточно прочна и надежна. Если ее в каком-либо месте специально сцарапать, она "самозалечивается" и возникает снова как ни в чем не бывало. Оксидная пленка защищает титан не только от коррозии, но и от умеренного механического воздействия, поэтому металл стоек также против эрозии и кавитации.

"Лучший друг" титана — кислород, поскольку является одним из сильнейших окислителей. Другие окисляющие агенты — азотная и хромовая кислоты, вода тоже помогает титану окисляться и тем самым покрываться невидимым защитным панцирем. Наблюдается удивительная картина: окисление, тот же самый процесс, который стремительно съедает железо, превращая его в окисел — ржавчину, делает титан сказочным богатырем, не боящимся почти никаких врагов.

По этой же самой причине влага и сырость — злейшие враги железа и многих других металлов — для титана являются чем-то вроде водных процедур, закаливая и укрепляя его. Так обстоит дело на практике.

Впрочем, свежезачищенная поверхность титана, опущенного в морскую воду или другой раствор, в котором металл стоек, поначалу действительно имеет низкий электродный потенциал— гораздо ниже нуля.

Но сразу после погружения потенциал начинает повышаться и вскоре из отрицательного делается положительным. Так что в действительности расхождения между теорией и практикой нет: высокой стойкостью против коррозии обладают металлы с высоким электродным потенциалом, которым обладает и титан, когда находится во многих агрессивных средах.

Страницы:


ООО "Гриднев" © 2001-2017
Адрес: Украина, г.Киев
ул. Электриков, 30

  E-mail: gridnev-okna@yandex.ru